Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lei Cao, Ning Li and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.021$
$w R$ factor $=0.052$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[(1H-benzimidazole- $\left.\kappa N^{3}\right)$ copper(II)]-μ_{3}-oxydiacetato]

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right]_{n}$, three oxydiacetate (ODA) dianions and one benzimidazole molecule coordinate to the $\mathrm{Cu}^{\text {II }}$ atom, resulting in an enlongated octahedral coordination geometry. Each ODA links three Cu atoms, chelating one and bridging two, forming a threedimensional polymeric complex.

Comment

The versatile coordination modes of dicarboxylate ligands have been revealed in many metal complexes. In the title polymeric compound, (I), the oxydiacetate dianion (ODA) shows a different coordination mode from those found in other transition metal complexes reported previously.

(I)

The asymmetric unit of (I) contains a $\mathrm{Cu}^{\mathrm{II}}$ atom, an ODA^{2-} dianion and a benzimidazole molecule. The coordination environment around the Cu atom is illustrated in Fig. 1. The Cu atom assumes an enlongated octahedral coordination geometry formed by one benzimidazole and three ODA. One ODA chelates to the Cu atom in the meridional mode and the other two coordinate, in a monodentate fashion, to the Cu atom via carboxyl groups in the axial direction. The average $\mathrm{Cu}-\mathrm{O}$ bond distance in the axial direction is about $0.52 \AA$ longer than that in the equatorial plane (Table 1).

Both five-membered chelate rings of ODA^{2-} have the envelope conformation; ether atom O 3 is in the flap position and is displaced from the mean planes formed by the other atoms by 0.340 (3) and 0.283 (3) \AA, for the O1- and O5containing rings, respectively.

The carboxy groups of ODA^{2-} play the role of bridging ligands in (I). Thus, (I) forms a three-dimensional polymeric structure in the crystal. This is different from the situation found in ODA-bridged complexes of $\mathrm{Co}^{\mathrm{II}}(\mathrm{Wu}$ et al., 2002) and of $\mathrm{Zn}^{\text {II }}$ (Baggio et al., 2003). In those crystal structures, one carboxy group of ODA bridged neighboring metal atoms but another was uncoordinated.

The benzimidazole molecule in (I) coordinates to the Cu atom in the equatorial plane; the mean plane of the benz-

Received 24 June 2004 Accepted 30 June 2004 Online 9 July 2004
imidazole is inclined to the equatorial plane of the $\mathrm{CuO}_{5} \mathrm{~N}$ moiety by a dihedral angle of 18.89 (7) ${ }^{\circ}$. As well as an $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2), $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions occur between the methylene group and a nearby imidazole ring, the $\mathrm{H} 12 \cdots C g^{\text {iv }}$ distance and $\mathrm{C} 12-\mathrm{H} 12 \cdots C g^{\text {iv }}$ angle being $2.85 \AA$ and 148°, respectively [symmetry code: (iv) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$].

Experimental

An aqueous solution (10 ml) containing ODA $(1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(1 \mathrm{mmol})$ was mixed with an aqueous solution $(5 \mathrm{ml})$ of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1 mmol). The solution was heated for several minutes, then an ethanol solution (5 ml) of benzimidazole (2 mmol) was added. The mixture was refluxed for a further 3 h and then filtered. Blue single crystals were obtained after 2 d .

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right]$
$M_{r}=313.75$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.2693$ (3) \AA
$b=9.5506$ (3) \AA
$c=16.6714$ (4) \AA
$V=1157.43(7) \AA^{3}$
$Z=4$
$D_{x}=1.801 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.53, T_{\max }=0.71$
11325 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.052$
$S=1.07$
2655 reflections
172 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 10407 reflections
$\theta=2.8-25.0^{\circ}$
$\mu=1.91 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, green
$0.33 \times 0.22 \times 0.18 \mathrm{~mm}$

2655 independent reflections
2576 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-12 \rightarrow 12$
$l=-21 \rightarrow 21$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0292 P)^{2}\right.$ $+0.3325 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1101 Friedel pairs
Flack parameter $=0.020(10)$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 1$	$1.9504(13)$	$\mathrm{Cu}-\mathrm{O} 4^{\mathrm{ii}}$	$2.4410(14)$
$\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}$	$2.5263(15)$	$\mathrm{Cu}-\mathrm{O} 5$	$1.9549(14)$
$\mathrm{Cu}-\mathrm{O} 3$	$1.9814(12)$	$\mathrm{Cu}-\mathrm{N} 3$	$1.9478(15)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 3$	$81.76(5)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 1$	$101.52(6)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 5$	$163.58(6)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 3$	$176.58(6)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 4^{4 i}$	$175.46(5)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 5$	$94.47(6)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O} 5$	$82.20(5)$		
Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z ;$ (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.			

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{v}}$	0.86	1.89	$2.746(3)$	177

Symmetry code: (v) $-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Figure 1
Fragment of (I), showing the Cu -atom environment [40% displacement ellipsoids; symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$; (iv) $\left.1-x, \frac{1}{2}+y, \frac{1}{2}-z\right]$.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.97 \AA$ (methylene) and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and were included in the final cycles of refinement in the riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Natural Science Foundation of Zhejiang Province (No. 202033), China.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Baggio, R., Garland, M. T. \& Perec, M. (2003). Acta Cryst. C59, m30-m32.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Wu, Z.-Y., Xu, D.-J., Wu, J.-Y. \& China, M. Y. (2002). Acta Cryst. E58, m634m635.

